The seabed (also known as the seafloor, sea floor, ocean floor, and ocean bottom) is the bottom of the ocean. All floors of the ocean are known as seabeds.
The structure of the seabed of the global ocean is governed by plate tectonics. Most of the ocean is very deep, where the seabed is known as the abyssal plain. Seafloor spreading creates mid-ocean ridges along the center line of major ocean basins, where the seabed is slightly shallower than the surrounding abyssal plain. From the abyssal plain, the seabed slopes upward toward the continents and becomes, in order from deep to shallow, the continental rise, slope, and shelf. The depth within the seabed itself, such as the depth down through a sediment core, is known as the "depth below seafloor". The ecological environment of the seabed and the deepest waters are collectively known, as a habitat for creatures, as the "benthos".
Most of the seabed throughout the world's oceans is covered in layers of marine sediments. Categorized by where the materials come from or composition, these sediments are classified as either: from land (terrigenous), from biological organisms (biogenous), from chemical reactions (hydrogenous), and from space (cosmogenous). Categorized by size, these sediments range from very small particles called and silts, known as mud, to larger particles from sand to boulders.
Features of the seabed are governed by the physics of sediment transport and by the biology of the creatures living in the seabed and in the ocean waters above. Physically, seabed sediments often come from the erosion of material on land and from other rarer sources, such as volcanic ash. Sea currents transport sediments, especially in shallow waters where Tide and wave energy cause resuspension of seabed sediments. Biologically, microorganisms living within the seabed sediments change seabed chemistry. Marine organisms create sediments, both within the seabed and in the water above. For example, phytoplankton with silicate or calcium carbonate shells grow in abundance in the upper ocean, and when they die, their shells sink to the seafloor to become seabed sediments.
Human impacts on the seabed are diverse. Examples of human effects on the seabed include exploration, plastic pollution, and exploitation by mining and dredging operations. To map the seabed, ships use acoustic technology to map water depths throughout the world. Submersible vehicles help researchers study unique seabed ecosystems such as hydrothermal vents. Plastic pollution is a global phenomenon, and because the ocean is the ultimate destination for global waterways, much of the world's plastic ends up in the ocean and some sinks to the seabed. Exploitation of the seabed involves extracting valuable minerals from via deep sea mining, as well as dredging sand from shallow environments for construction and beach nourishment.
The mid-ocean ridge, as its name implies, is a mountainous rise through the middle of all the oceans, between the continents. Typically a rift runs along the edge of this ridge. Along tectonic plate edges there are typically – deep valleys, created by the mantle circulation movement from the mid-ocean mountain ridge to the oceanic trench.
Hotspot volcanic island ridges are created by volcanic activity, erupting periodically, as the tectonic plates pass over a hotspot. In areas with volcanic activity and in the oceanic trenches there are hydrothermal vents – releasing high pressure and extremely hot water and chemicals into the typically freezing water around it.
Deep ocean water is divided into layers or zones, each with typical features of salinity, pressure, temperature and marine life, according to their depth. Lying along the top of the abyssal plain is the abyssal zone, whose lower boundary lies at about 6,000 m (20,000 ft). The hadal zone – which includes the oceanic trenches, lies between 6,000 and 11,000 metres (20,000–36,000 ft) and is the deepest oceanic zone.
Biogenous sediment is the next most abundant material on the seafloor. Biogenous sediments are biologically produced by living creatures. Sediments made up of at least 30% biogenous material are called "oozes." There are two types of oozes: Calcareous oozes and Siliceous oozes. Plankton grow in ocean waters and create the materials that become oozes on the seabed. Calcareous oozes are predominantly composed of calcium shells found in phytoplankton such as coccolithophores and zooplankton like the foraminiferans. These calcareous oozes are never found deeper than about 4,000 to 5,000 meters because at further depths the calcium dissolves." The Bottom of the Ocean," Marine Science Similarly, Siliceous oozes are dominated by the siliceous shells of phytoplankton like diatoms and zooplankton such as radiolarians. Depending on the productivity of these planktonic organisms, the shell material that collects when these organisms die may build up at a rate anywhere from 1 mm to 1 cm every 1000 years.
Cosmogenous sediments are the remains of space debris such as comets and asteroids, made up of silicates and various metals that have impacted the Earth." Types of Marine Sediments", Article Myriad
Marine topographies include coastal and oceanic landforms ranging from coastal Estuary and to continental shelves and . Further out in the open ocean, they include underwater and deep sea features such as ocean rises and . The submerged surface has mountainous features, including a globe-spanning mid-ocean ridge system, as well as undersea , , , and .
The mass of the oceans is approximately 1.35 , or about 1/4400 of the total mass of the Earth. The oceans cover an area of 3.618 km2 with a mean depth of 3,682 m, resulting in an estimated volume of 1.332 km3.
7.30% |
4.38% |
35.22% |
52.08% |
0.89% |
0.09% |
0.03% |
0.01% |
< 0.01% |
Seabed topography is flat where layers of sediments cover the tectonic features. For example, the abyssal plain regions of the ocean are relatively flat and covered in many layers of sediments. Sediments in these flat areas come from various sources, including but not limited to: land erosion sediments from rivers, chemically precipitated sediments from hydrothermal vents, Microorganism activity, eroding the seabed and transporting sediments to the deeper ocean, and phytoplankton shell materials.
Where the seafloor is actively spreading and sedimentation is relatively light, such as in the northern and eastern Atlantic Ocean, the original tectonic activity can be clearly seen as straight line "cracks" or "vents" thousands of kilometers long. These underwater mountain ranges are known as mid-ocean ridges.
Other seabed environments include hydrothermal vents, cold seeps, and shallow areas. Marine life is abundant in the deep sea around hydrothermal vents. Large deep sea communities of marine life have been discovered around black and white smokers – vents emitting chemicals toxic to humans and most vertebrates. This marine life receives its energy both from the extreme temperature difference (typically a drop of 150 degrees) and from chemosynthesis by bacteria. are another seabed feature, usually connected to . In shallow areas, the seabed can host sediments created by marine life such as corals, fish, algae, crabs, marine plants and other organisms.
|
|